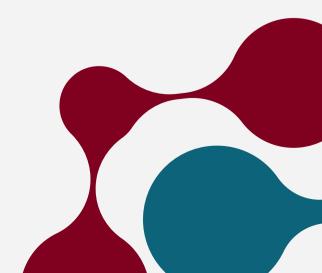

OncoDynamics

Test Catalogue


TABLE OF CONTENTS

1.	HISSUE BIOPSY	
	1.1 OncoProfile Advanced 500+	6
	1.2 OncoProfile Advanced 500+46	8
	1.3 OncoProfile 161	11
	1.4 OncoProfile 52	13
	1.5 OncoProfile OVARY 46	14
	1.6 OncoProfile COLORRECTAL 19	15
	1.7 OncoProfile LUNG 12	16
	1.8 Test BRCA Extended (21 genes)	17
	1.9 Test BRCA (2 genes)	18
2.	LIQUID BIOPSY	
	2.1 OncoProfile Liquid GENERAL 52	20
	2.2 Oncoprofile Liquid COLORRECTAL 14	21
	2.3 OncoProfile Liquid MAMA 12	22
	2.4 OncoProfile Liquid LUNG 12	23
3.	HEREDITARY CANCER SYNDROMES	
	3.1 Inherit-Gene Cancer Test 200+	26
	3.2 Inherit-Gene Cancer Test 39	27
4.	EX-VIVO TESTS	29
5.	SPECIALIZED SERVICES	
	5.1 Detection of Specific Mutations	
	5.2 Genomic Instability Detection	
	5.3 Pharmacogenomics	

1. TISSUE BIOPSY

- 1.1 OncoProfile Advanced 500+
- 1.2 OncoProfile Advanced 500+46
- 1.3 OncoProfile 161
- 1.4 OncoProfile 52
- 1.5 OncoProfile OVARY 46
- 1.6 OncoProfile COLORRECTAL 19
- 1.7 OncoProfile LUNG 12
- 1.8 Test BRCA Extended
- 1.9 Test BRCA

From a single sample, in a single test, we can offer a truly comprehensive genomic profile based on **DNA and RNA analysis of >500 genes, using next-generation sequencing (NGS).**

This panel detects:

TMB: tumor mutational burden MSI: microsatellite instability

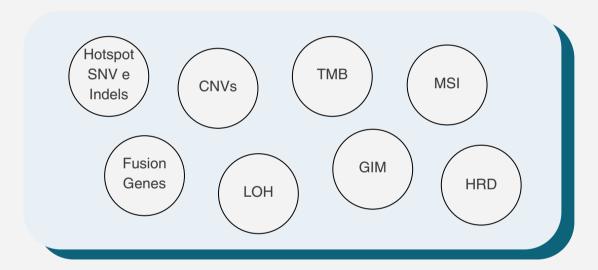
HRR: homologous recombination repair

LOH: genomic instability with loss of heterozygosity

1.1 OncoProfile Advanced 500+

Hotspot Genes (n=57)		CNV Gain Genes (n=19)	Copy Number Variation and Hotspot Genes (n=107)			Gene Fusions (n=51) (Inter- and Intra-genic)			
ACVR1 ATP1A1 BCR BMP5 BTK CACNA1D CD79B CSF1R CTNNB1 CUL1 CYSLTR2 DGCR8 DROSHA E2F1 EPAS1 FGF7 FOXL2 FOXO1 GL11 GNA11 GNA11 GNAQ HIF1A HIST1H2BD HIST1H3B HRAS IDH1	IRF4 IRS4 KLF4 KNSTRN MAP2K2 MED12 MYOD1 NSD2 NT5C2 NTRK2 NUP93 PAX5 PIK3CD PIK3CD PIK3CG PTPRD RGS7 RHOA RPL10 SIX1 SIX2 SNCAIP SOX1 SOX2 SRSF2 STAT5B TAF1	TRRAP TSHR WAS	ABCB1 CTNND2 DDR1 EMSY FGF19 FGF23 FGF3 FGF4 FGF9 FYN GLI3 IGF1R MCL1 MDM2 MYGL RPS6KB1 RPTOR YAP1 YES1	ABL1 ABL2 AKT1 AKT2 AKT3 ALK AR ARAF AURKA AURKC AXL BCL2 BCL2L12 BCL6 BRAF CARD11 CBL CCND1 CCND2 CCND3 CCNC1 CDK4 CDK6 CHD4 DDR2 EGFR	ERBB2 ERBB3 ERBB4 ESR1 EZH2 FAM135B FGFR1 FGFR2 FGFR3 FGFR4 FLT3 FLT4 FOXA1 GATA2 GNAS H3F3A H3F3B IDH2 IKBKB ILTB KDR KIT KLF5 KRAS MAGOH MAP2K1	MAX MDM4 MECOM MEF2B MET RAR MITF MPL MTOR MYC MYCN MYD88 NFE2L2 NRAS NTRK1 NTRK3 PCBP1 PDGFRA PDGFRA PDGFRA PIK3CA PIK3CA PIK3CA PIK3CB PIK3C	PTPN11 PXDNL RAC1 RAF1 RET RHEB RICTOR RIT1 ROS1 SETBP1 SF3B1 SLC01B3 SMC1A SMO SPOP SRC STAT3 STAT6 TERT TOP1 TPMT U2AF1 USP8 XPO1 ZNF217 ZNF429	AKT2 ALK AR AXL BRAF BRCA1 BRCA2 CDKN2A EGFR ERBB2 ERBB4 ERG ESR1 ETV1 ETV4 ETV5 FGFR1 FGFR2 FGFR3 FGR FLT3 JAK2 KRAS MDM4 MET MYB	NF1 NOTCH1 NOTCH4 NRG1 NTRK1 NTRK2 NTRK3 NUTM1 PDGFRA PDGFRA PPARG PRKACA PRACA PRKACA

CNV Loss	and CDS (n	=206)		CDS Only Genes (n=21)	TMB only (genes (n=86)				
ABRAXAS1 ACVR1B ACVR2A ADAMTS12 ADAMTS2 AMER1 APC ARHGAP35 ARID1B ARID5B ARID5B ARID5B ARID5B AXXL1 ASXL2 ATM ATR AXIN1 AXIN1 BARD1	CD274 CD276 CDC73 CDC73 CDH1 CDH10 CDK12 CDKN1A CDKN1B CDKN2A CDKN2B CDKN2C CHEK1 CHEK2 CIC CREBBP CSMD3 CTCF CTLA4 CUL3 CUL4B CYLD CYP2C9 DAXX DDX3X DICER1 DNMT3A DOCK3 DPYD DSC1	DSC3 ELF3 ENO1 EP300 EPCAM EPHA2 ERAP1 ERAP2 ERCC2 ERCC4 ERRF11 ETV6 FANCA FANCA FANCC FANCB FANCF FANCF FANCF FANCF FANCH FAT1 FEXW7 FUBP1 GATA3 GNA13 GPS2 HDAC2 HDAC9	HLA-A HLA-B HINF1A INPP4B JAK1 JAK2 JAK3 KDM5C KDM5A KEAP1 KMT2A KMT2B KMT2C KMT2C KMT2C KMT2C MAP4B LATS1 LATS2 MAP2K4 MAP2K7 MAP3K1 MAP3K1 MAP3K1 MAPK8 MEN1 MGA MLH1 MSH2 MSH3 MSH6	MTAP MUTYH NBN NCOR1 NF1 NF2 NOTCH1 NOTCH2 NOTCH3 NOTCH4 PALB2 PARP1 PARP2 PARP3 PARP4 PBRM1 PDCD1 PDCD1LG2 PDIA3 PGD PHF6 PIK3R1 PMS1 PMS2 POLD1 POLE POLE POLE POT1 PPM1D PPP2R2A	PRDM1 PRDM9 PRKAR1A PTCH1 PTEN PTPRT RAD50 RAD51 RAD51C RAD51D RAD52 RAD54L RASA1 RASA2 RB1 RASA2 RB1 RASA4 RNASEH2A RNASEH2A RNASEH2B RNF43 RPA1 RUNX1 SDHB SDHB SDHB SDHB SDHB SDHB SETD2 SLX4 SMAD2	SMAD4 SMARCA4 SMARCB1 SOX9 SPEN STAG2 STK11 SUFU TAP1 TAP2 TEX3 TCF7L2 TEX3 TCF7L2 TET2 TGFBR2 TNFAIP3 TNFAIP3 TNFASF14 TP53 TP63 TP92 TSC1 TSC2 USP9X VHL WT1 XRCC2 XRCC3 ZFHX3 ZFHX3 ZFHX3 ZFHX3 ZFHX3 ZFHX3 ZFHX3 ZFM	CALR CITA CYP2D6 ERCC5 FAS ID3 KLHL13 MTUS2 PSMB10 PSMB8 PSMB9 RNASEH2C RPL22 RPL5 RUNX1T1 SDHC SOCS1 STAT1 TMEM132D UGT1A1 ZBTB20	A1CF ACSM2B ADAM18 ANO4 ARMC4 BRINP3 C6 C8A C8B CANX CASR CD163 CNTN6 CNTNAP4 CNTNAP5 COL11A1 DCAF412 DCDC1 GALNT17 GPR158 GRID2 HCN1 HLA-C KCND2 KCNH7 KEL KIR3DL1 KRTAP2-1 KRTAP6-2	LRRC7 MARCO NLRC5 NOL4 NRXN1 NYAP2 OR10G8 OR2L13 OR2L2 OR2L8 OR2M3 OR2T3 OR2T4 OR2W3 OR2T4 OR2W3 OR4C15 OR4C6 OR4M1 OR5D18 OR5D18 OR5D18 OR5D18 OR5L1 OR5L2 OR6F1 OR6L2 OR6H2 OR8U1	ORC4 PAK5 PCDH17 PCDH17 PCDH17 PDE1C PLXDC2 POM121L1 PPFIA2 RBP3 REG1A REG3G REG3A REG3G RPTIN RUNDC3B SH3RF2 SLC15A2 SLC8A1 SYT10 SYT16 TAPBP TPTE TRHDE TRHDE TRHDE TRIM48 TRIM51 ZIM3 ZNF479 ZNF536



1.2 OncoProfile Advanced 500+46

OncoProfile Advanced 500+46 has the same basis as OncoProfile Advanced 500+ with the addition of 46 genes involved in the HRR pathway, useful for assessing HRD and selecting patients who are candidates for **PARP** inhibitors.

This panel detects:

TMB: tumor mutational burden MSI: microsatellite instability

HRR: homologous recombination repair

LOH: genomic instability with loss of heterozygosity

GIM: Genomic Instability Metric HRD: Homologous Recombination

1.2 OncoProfile Advanced 500+ 46

CDS Genes (n=46)

ABRAXAS1 POLD1 ATM POLE ATR PPP2R2A BAP1 PTEN BARD1 RAD50 BLM RAD51 BRCA1 RAD51B BRCA2 RAD51C BRIP1 RAD51D CDK12 RAD54L CHEK1 RNASEH2A CHEK2 RNASEH2B **FANCA** RNASEH2C FANCC RPA1 FANCD2 SLX4 FANCE TP53 **FANCE** XRCC2 XRCC3 FANCG **FANCI** FANCL **FANCM** MRE11 NBN PALB2 PARP1 PARP2 PARP3

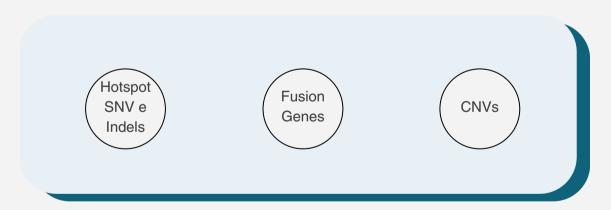
CNV genes (n=45)

ABRAXAS1 POLD1

ATM POLE ATR PPP2R2A BAP1 PTEN BARD1 RAD50 BLM RAD51 BRCA1 RAD51B BRCA2 RAD51C BRIP1 RAD51D CDK12 RAD54L CHEK1 RNASEH2A CHEK2 RNASEH2B **FANCA** RPA1 FANCC SLX4 FANCD2 TP53 FANCE XRCC2 XRCC3 **FANCF FANCG FANCI** FANCL **FANCM** MRE11 NBN PALB2 PARP1 PARP2 PARP3

1.2 OncoProfile Advanced 500+46

Hotspot Genes (n=57) Ge		CNV Gain Genes (n=19)	(A=1074)				Gene Fusions (n=51) (Inter- and Intra-genic)		
ACVR1 ATP1A1 BCR BMP5 BTK CACNA1D CD79B CSF1R CTNNB1 CUL1 CYSLTR2 DGCR8 DROSHA E2F1 EPAS1 FGF7 FOXL2 FOXO1 GLI1 GNA11 GNA0 HIF1A HIST1H2BD HIST1H3B HRAS IDH1 LEST	IRF4 IRS4 KLF4 KLSTRN MAP2K2 MED12 MYOD1 NS02 NT5C2 NT5K2 NUP93 PAX5 PIK3CD PIK3CD PIK3CG PTPRD RGS7 RHOA RPL10 SIX1 SIX2 SNCAIP SOX2 SRSF2 STAT5B TAF1 TGFBR1	TRRAP TSHR WAS	ABCB1 CTINID2 DDR1 EMSY FGF19 FGF23 FGF4 FGF9 FYN GLI3 IGF1R MCL1 MDM2 MYGL RPS6KB1 RPTOR YAP1 YES1	ABL1 ABL2 AKT1 AKT2 AKT3 ALK AR ARAF AURKA AURKC AXL BCL2 BCL2L12 BCL6 BRAF CARD11 CBL CCND1 CCND2 CCND3 CCNE1 CDK6 CHD4 DDR2 EGFR EIF1AX	ERBB2 ERBB3 ERBB4 ESR1 EZH2 FAM135B FGFR1 FGFR2 FGFR3 FGFR4 FLT3 FLT4 FOXA1 GATA2 GNAS H3F3A H3F3B JDH2 JKBKB JL7R KDR KIT KLF5 KRAS MAGOH MAP2K1	MAX MDM4 MECOM MEF2B MET RAR MITF MPL MTOR MYC MYCN MYD88 NFE2L2 NRAS NFE2L2 NRAS NTRK1 NTRK3 PCBP1 PDGFRA PDGFRA PDGFRA PIK3CB PIK3CB PIK3CB PIK3CB PIK3CB PIK3CB PIK3CB PIK3CB PPP2R1 A PPP6C PRKACA	PTPN11 PXDNL RAC1 RAF1 RET RHEB RICTOR RIT1 ROS1 SETBP1 SF3B1 SLC01B3 SMC1A SMO SPOP SRC STAT3 STAT3 STAT6 TERT TOP1 TPMT U2AF1 USP8 XPO1 ZNF217 ZNF429	AKT2 ALK AR AXL BRAF BRCA1 BRCA2 CDKN2A EGFR ERBB2 ERBB4 ERG ESTV1 ETV4 ETV5 FGFR1 FGFR2 FGFR3 FGR FLT3 JAK2 KRAS MDM4 MET MYB MYBL1	NF1 NOTCH1 NOTCH4 NRG1 NTRK1 NTRK2 NTRK3 NUTM1 PDGFRA PDGFRA PPARG PRKACA PRKACA PRKACB PTEN RAD51B RAF1 RB1 RELA RET ROS1 RSP02 RSP03 TERT


CNV Loss	and CDS (n	=206)		CDS Only Genes (n=21)	TMB only (genes (n=86)				
ABRAXAS1 ACVR1B ACVR2A ADAMTS12 ADAMTS2 AMER1 APC ARHGAP35 ARID1B ARID5B ARID5B ARID5B ARID5B AXXL1 ASXL2 ATM ATR AXIN1 AXIN1 BARD1 BARD1 BARD1 BARD1 BARD1 BARD1 BARD1 BARD1 BBCA1 BBRCA2 BRICA2	CD274 CD276 CDC73 CDC73 CDH1 CDH10 CDK12 CDKN1A CDKN1B CDKN2A CDKN2A CDKN2C CHEK1 CHEK2 CIC CREBBP CSMD3 CTCF CTLA4 CUL3 CUL4A CUL4B CYLD CYP2C9 DAXX DDX3X DICER1 DNMT3A DOCK3 DPYD DSC1	DSC3 ELF3 ENO1 EP300 EPCAM EPHA2 ERAP1 ERAP2 ERCC2 ERCC4 ERRF11 ETV6 FANCA FANCC FANCD FANCB FANCF FANCF FANCF FANCF FANCH FAT1 FBXW7 FUBP1 GATA3 GNA13 GPS2 HDAC2 HDAC9	HLA-A HLA-B HNF1A INPP4B JAK1 JAK2 JAK3 KOM5C KOM6A KEAP1 KMT2C KMT2C KMT2C KMT2C KMT2C MAP4B LATS1 LATS1 LATS2 MAP2K4 MAP2K7 MAP3K1 MAP3K1 MAP3K1 MAPK8 MEN1 MGA MLH1 MLH3 MRE11 MSH2 MSH3 MSH6	MTAP MUTYH NBN NCOR1 NF1 NF2 NOTCH1 NOTCH2 NOTCH3 NOTCH4 PALB2 PARP1 PARP2 PARP2 PARP3 PARP4 PBRM1 PDCD1 PDCD1LG2 PDIA3 PGD PHF6 PIK3R1 PMS1 PMS2 POLD1 POLE POLE POT1 PPM1D PPP2R2A	PRDM1 PRDM9 PRKAR1A PTCH1 PTEN PTPRT RAD50 RAD51 RAD51C RAD51D RAD52 RAD54L RAD54L RASA1 RASA2 RB1 RASA2 RB1 RBM10 RECQL4 RNASEH2A RNASEH2A RNASEH2B RNF43 RPA1 RUNX1 SDHB SDHD SETD2 SLX4 SMAD2	SMAD4 SMARCA4 SMARCB1 SOX9 SPEN STAG2 STK11 SUFU TAP1 TEX3 TCF7L2 TEX3 TCF7L2 TGFBR2 TNFAIP3 TNFAIP3 TP63 TP92 TSC1 TSC2 USP9X VHL WT1 XRCC2 XRCC3 ZFHX3 ZMYM3 ZFSR2	CALR CIITA CYP2D6 ERCC5 FAS ID3 KLHL13 MTUS2 PSMB10 PSMB8 PSMB9 RNASEH2C RPL22 RPL5 RUNXIT1 SDHC SOCS1 STAT1 TIMEM132D UGT1A1 ZBTB20	A1CF ACSM2B ADAM18 ANO4 ARMC4 BRINP3 C6 C8A C8B CANX CASR CD163 CNTINB CNTINAP4 CNTINAP5 COL11A1 DCAF4L2 DCDC1 GALNT17 GPR158 GRID2 HCN1 HLA-C KCND2 KCNH7 KEL KIR3DL1 KRTAP6-2	LRRC7 MARCO NLRC5 NOL4 NRXN1 NYAP2 OR10G8 OR2L13 OR2L2 OR2L8 OR2M3 OR2T3 OR2T3 OR2T4 OR2W3 OR4M1 OR4M1 OR4M1 OR5D18 OR5D18 OR5D18 OR5D18 OR5L1 OR5L2 OR6F1 OR5L2 OR6F1 OR8L2 OR8L2 OR8L2 OR8L2 OR8L2 OR8L2 OR8L2 OR8L2	ORC4 PAK5 PCDH17 PDE1A PDE1C PLXDC2 POM121L1 PPF1A2 RBP3 REG1A REG3G RFTIN RUNDC3B SH3RF2 SLC15A2 SLC8A1 SYT10 SYT16 TAPBP TPTE TRHDE TRHDE TRHM48 TRIM51 ZIM3 ZNF479 ZNF536

161 1.3 OncoProfile 161

Capable of identifying pathogenic variants by evaluating 161 genes proven to be useful in cancer.

This test includes:

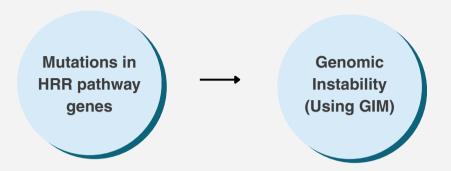
- Extensive coverage of kinase domains in tyrosine kinase receptors, which increases the chances of detecting relevant functional mutations in addition to prevalent pathological variants that are informative for treatment decisions (ALK, BRAF, DDR2, EGFR, KIT, ROS1, NTKR, MET, PDGFRA, RET, ERBB2, PIK3, IDH1).
- Broad coverage of genes related to DNA repair pathways (31 genes).
- Broad coverage of genes such as MAPK, PIK3, as well as genes related to the cell cycle.

1.3 OncoProfile 161

Hotspot g	enes			Full-length genes			
AKT1 AKT2 AKT3 ALK AR ARAF	ESR1 EZH2 FGFR1 FGFR2 FGFR3 FGFR4	KIT KNSTRN KRAS MAGOH MAP2K1 MAP2K2	PDGFRB PIK3CB PIK3CA PPP2R1A PTPN11 RAC1	ARID1A ATM ATR ATRX BAP1 BRCA1	FBXW7 MLH1 MRE11 MSH6 MSH2 NBN	PTEN RAD50 RAD51 RAD51B RAD51C RAD51D	
AXL BRAF BTK CBL CCND1 CDK4 CDK6 CHEK2 CSF1R CTNNB1 DDR2 EGFR ERBB2 ERBB3 ERBB4	FLT3 FOXL2 GATA2 GNA11 GNAQ GNAS H3F3A HIST1H3B HNF1A HRAS IDH1 IDH2 JAK1 JAK2 JAK3	MAP2K4 MAPK1 MAX MDM4 MED12 MET MTOR MYC MYCN MYD88 NFE2L2 NRAS NTRK1 NTRK2 NTRK3	RAF1 RET RHEB RHOA ROS1 SF3B1 SMAD4 SMO SPOP SRC STAT3 TERT TOP1 U2AF1 XPO1	BRCA2 CDK12 CDKN1B CDKN2A CDKN2B CHEK1 CREBBP FANCA FANCD2 FANCI	NF1 NF2 NOTCH1 NOTCH2 NOTCH3 PALB2 PIK3R1 PMS2 POLE PTCH1	RNF43 RB1 SETD2 SLX4 SMARCA4 SMARCB1 STK11 TP53 TSC1 TSC2	

Copy number genes		Gene Fusions (n=51) (inter-and intragenic)				
AKT1	FGFR4	AKT2	FGFR2	NUTM1		
AKT2	FLT3	ALK	FGFR3	PDGFRA		
AKT3	IGF1R	AR	FGR	PDGFRB		
ALK	KIT	AXL	FLT3	PIK3CA		
AXL	KRAS	BRCA1	JAK2	PRKACA		
AR	MDM2	BRCA2	KRAS	PRKACE		
BRAF	MDM4	BRAF	MDM4	PTEN		
CCND1	MET	CDKN2A	MET	PPARG		
CCND2	MYC	EGFR	MYB	RAD51B		
CCND3	MYCL	ERBB2	MYBL1	RAF1		
CCNE1	MYCN	ERBB4	NF1	RB1		
CDK2	NTRK1	ERG	NOTCH1	RELA		
CDK4	NTRK2	ESR1	NOTCH4	RET		
CDK6	NTRK3	ETV1	NRG1	ROS1		
EGFR	PDGFRA	ETV4	NTRK1	RSPO2		
ERBB2	PDGFRB	ETV5	NTRK2	RSP03		
ESR1	PIK3CB	FGFR1	NTRK3	TERT		
FGF19	PIK3CA					
FGF3	PPARG					
FGFR1	RICTOR					
FGFR2	TERT					
FGFR3						

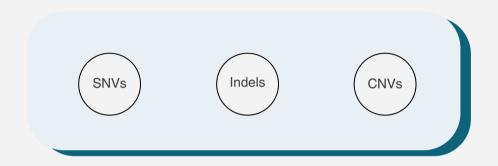
1.4 OncoProfile 52


- Sensitive detection of variants in 52 genes with high relevance in multiple types of cancer.
- Genes carefully selected for their usefulness in the management and treatment of oncological processes.
- Allows simultaneous DNA and RNA results to be obtained.
- Compatible with samples of as little as 10 ng of genetic material from paraffinembedded tumor tissue.

Hotspot Genes (n=35)				Number s (n=19)	Fusion (n=23)	Genes
AKT1 ALK AR BRAF CDK4 CTNNB1 DDR2 EGFR ERBB2 ERBB3 ERBB4 ESR1 FGFR2 FGFR3 GNA11 GNAQ	HRAS IDH1 IDH2 JAK1 JAK2 JAK3 KIT KRAS MAP2K1 MAP2K2 MET MTOR NRAS PDGFRA PIK3CA RAF1	RET ROS1 SMO	ALK AR BRAF CCND1 CDK4 CDK6 EGFR ERBB2 FGFR1 FGFR2 FGFR3 FGFR4 KIT KRAS MET MYC	MYCN PDGFRA PIK3CA	ABL1 AKT3 ALK AXL BRAF EGFR ERBB2 ERG ETV1 ETV4 ETV5 FGFR1 FGFR2 FGFR3 MET NTRK1	NTRK2 NTRK3 PDGFRA PPARG RAF1 RET ROS1

1.5 OncoProfile OVARY 46

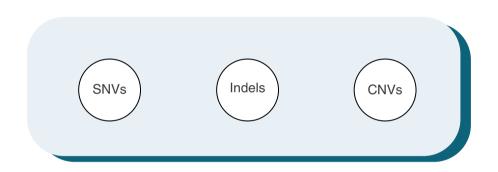
This test analyzes:


This panel covers 46 genes involved in the HRR pathway:

ADDAYACI	DOLD4	ADDAYADA	DOLD1
ABRAXAS1		ABRAXAS1	POLD1
ATM	POLE	ATM	POLE
ATR	PPP2R2A	ATR	PPP2R2A
BAP1	PTEN	BAP1	PTEN
BARD1	RAD50	BARD1	RAD50
BLM	RAD51	BLM	RAD51
BRCA1	RAD51B	BRCA1	RAD51B
BRCA2	RAD51C	BRCA2	RAD51C
BRIP1	RAD51D	BRIP1	RAD51D
CDK12	RAD54L	CDK12	RAD54L
CHEK1	RNASEH2A	CHEK1	RNASEH2A
CHEK2	RNASEH2B	CHEK2	RNASEH2E
FANCA	RNASEH2C	FANCA	RPA1
FANCC	RPA1	FANCC	SLX4
FANCD2	SLX4	FANCD2	TP53
FANCE	TP53	FANCE	XRCC2
FANCF	XRCC2	FANCF	XRCC3
FANCG	XRCC3	FANCG	
FANCI		FANCI	
FANCL		FANCL	
FANCM		FANCM	
MRE11		MRE11	
NBN		NBN	
PALB2		PALB2	
PARP1		PARP1	
PARP2		PARP2	
PARP3		PARP3	

1.6 OncoProfile COLORRECTAL 19

It includes 19 genes, including the MMR (mismatch repair pathway) genes MLH1, MSH2, MSH6, PMS2, and other genes of recognized clinical utility in colorectal cancer such as APC, MUTYH, KRAS, and NRAS.



Genes	MLH1, MSH2, MSH6, PMS2, APC, AXIN2, CDH1, CHEK2, EPCAM, MSH3, MUTYH, POLD1, POLE, PTEN, SMAD4, TP53, KRAS, NRAS, BRAF
Test value	Genetic testing of solid tumors. Confirmation or exclusion of Lynch syndrome. Cancer treatment management. Risk assessment for hereditary cancer syndromes associated with these genes: Lynch syndrome, familial adenomatous polyposis (FAP), and colorectal polyposis.

12 1.7 OncoProfile LUNG 12

AUsing paraffin-embedded tumor tissue samples (FFPE) and massive sequencing techniques, our test is capable of evaluating 12 genes with proven clinical utility in genetic material extracted from this type of sample.

This test provides results related to tumor heterogeneity and the detection of treatment-resistant clones.

Genes		Fusion Genes	
ALK	NRAS	ALK	
BRAF	PIK3CA	ROS1	
EGFR	RET	RET	
ERBB2	ROS1		
KRAS	TP53		
MAP2K1			
MET			

- 12 genes
- Librería única a partir de ADN y ARN
- 58 amplicons
- >169 hotspots e Indels

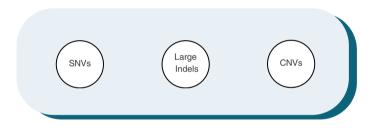
21 GENES

1.8 Test BRCA Extended

It analyzes 21 genes that are fundamental in the genetic study of **breast, ovarian, and prostate cancer.**

It provides information on pathogenic variants in the **BRCA1** and **BRCA2** genes, along with all the genes recommended by the **SEOM** (Spanish Society of Medical Oncology), and other genes related to homologous DNA recombination with described clinical utility.

Genes	BRCA1, BRCA2, ATM, BARD1, BRIP1, CDH1, CDK12, CHEK2, FANCD2, MRE11, MLH1, MSH2, NBN, NF1, PALB2, PTEN, RAD50, RAD51C, RAD51D, TP53, PMS2
Test Value	Cancer management (possibility of treatment with PARP inhibitors). Risk assessment for hereditary breast, ovarian, and prostate cancer. It is mainly used for the genetic study of breast and ovarian cancer, but it also has informative value in prostate cancer.

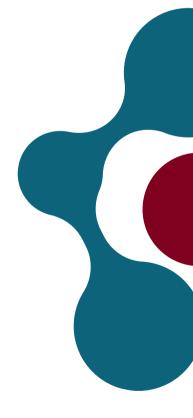

2 1.9 Test BRCA

The percentage of prostate cancers in which mutations in the **BRCA** genes are found reaches up to 40%.

In the general population, it is estimated that 1.3% of women will develop ovarian cancer during their lifetime. Mutations in **BRCA1** and **BRCA2** are thought to cause around 15-20% of ovarian cancers in general.

Mutations in BRCA1 and BRCA2 are thought to cause about 16% of hereditary breast cancers, which in turn account for between 5% and 10% of all breast cancers in women.

BRCA1 and BRCA2 are the genes most frequently involved and carry a considerable lifetime risk of breast cancer (72% for BRCA1 and 69% for BRCA2, up to age 80).



Genes	BRCA1 y BRCA2
Test Value	It is mainly used for the genetic study of breast, ovarian, and prostate cancer, but it also provides valuable information in pancreatic cancer. Assessment of the risk of cancer associated with mutations in the BRCA1 and BRCA2 genes. Management of cancer treatment and decisions regarding treatment with PARP inhibitors.

2. LIQUID BIOPSY

- 2.1 OncoProfile Liquid GENERAL 52
- 2.2 Oncoprofile Liquid COLORRECTAL 14
- 2.3 OncoProfile Liquid MAMA 12
- 2.4 OncoProfile Liquid LUNG 12

2.1 OncoProfile Liquid GENERAL 52

This test provides relevant results in patients regarding: tumor heterogeneity, detection of treatment-resistant clones, and detection of recurrence earlier than imaging tests.

The general test is capable of evaluating 52 genes with proven clinical utility in cell-free tumor DNA (ctDNA), including key targets recognized by experts (SNVs, InDels, CNVs, and gene fusions).

Hotspot Genes		
ERBB3 ERG ESR1 ETV1 FBXW7 FGFR1 FGFR2 FGFR3 FGFR4 FLT3 GNA11 GNAQ GNAS HRAS IDH1	AKT1 ALK APC AR ARAF BRAF CCND1 CCND2 CCND3 CDK4 CDK6 CHEK2 CTNNB1 CDR2 EGFR	

- 52 genes
- >900 Hotspots e Indels
- 12 CNVs
- Librería única a partir de ADN y ARN
- Cobertura extendida de TP53
- MET exon 14 skipping

- 272 amplicons
- 96 fusions

2.2 Oncoprofile Liquid COLORRECTAL 14

Our test provides relevant results for patients in terms of tumor heterogeneity, detection of treatment-resistant clones, and detection of recurrence earlier than imaging tests.

The test includes 14 genes with proven clinical utility in cell-free tumor DNA (ctDNA) present in blood plasma.

Genes	
AKT1	GNAS
APC	KRAS
BRAF	MAP2K1
CTNNB1	NRAS
EGFR	PIK3CA
ERBB2	SMAD4
FBXW7	TP53

- 14 genes
- 49 amplicons
- 236 Hotspots e Indels

2.3 OncoProfile Liquid MAMA 12

The test evaluates 12 genes with proven clinical utility in cell-free tumor DNA (ctDNA) present in blood plasma.

Our test provides patients with relevant results regarding tumor heterogeneity, detection of treatment-resistant clones, and detection of recurrence earlier than imaging tests.

Genes		
AKT1	FBXW7	
CCND1	FGFR1	
EGFR	KRAS	
ERBB2	PIK3CA	
ERBB3	SF3B1	
ESR1	TP53	

- 12 genes
- · 76 amplicons
- >150 hotspots

- CNVs: CCND1, ERBB2, FGFR1
- Amplia cobertura de TP53

2.4 OncoProfile Liquid LUNG 12

Our test is capable of evaluating 12 genes with proven clinical utility in cell-free tumor DNA (ctDNA) present in blood plasma.

Our test provides patients with relevant results regarding: tumor heterogeneity, detection of treatment-resistant clones, and detection of recurrence earlier than imaging tests.

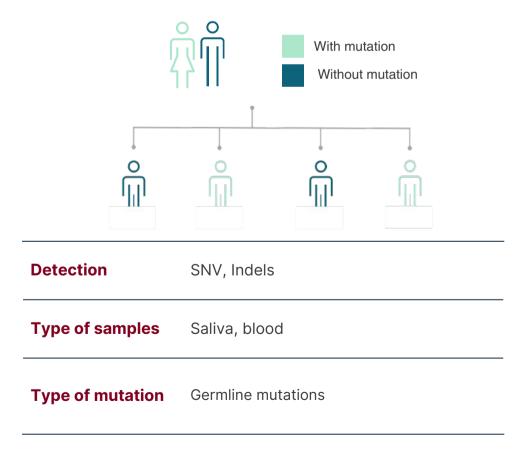
Genes		Fusion Genes
ALK	NRAS	ALK
BRAF	PIK3CA	ROS1
EGFR	RET	RET
ERBB2	ROS1	
KRAS	TP53	
MAP2K1		
MET		

3. HEREDITARY CANCER SYNDROME

- 3.1 Inherit-Gene Cancer Test 200+
- 3.2 Inherit-Gene Cancer Test 39

3. HEREDITARY CANCER SYNDROME

BETWEEN 10-15% OF CANCERS ARE DUE TO INHERITED MUTATIONS


Germline mutations are rare, but when present they can significantly increase the likelihood of developing cancer.

The presence of the mutation does not mean that cancer will develop, but knowing our risk helps us make early decisions:

- It allows you to begin screening processes such as mammograms or colonoscopies much earlier than the general population.
- Take preventive measures (if recommended).
- . It helps other members of your family know if they may be at risk.

AUTOSOMAL DOMINANT INHERITANCE MODEL

3.1 Inherit-Gene Cancer Test 200+

Our panel offers average coverage >100X for more than 200 genes related to hereditary cancer syndromes.

Our panel includes:

- Genes recognized by the CDC (Center for Disease Control and Prevention) as important for public health.
- BRCA2, BRCA1, PALB2, TP53, CDH1, STK11, PTEN, and those in which
 pathogenic genetic variants have been identified that are associated with risks that
 we consider high; therefore, these genes are commonly referred to as High
 Penetrance Genes.
- Genes whose pathogenic variants are associated with a multitude of cancer types, such as PTEN and TP53.

COMPLETE LIST OF GENES:

ABRAXAS1, ACD, ACVRL1, AIP, ALK, ANKRD26, APC, AR, ARAF, ATM, ATR, ATRIP, AXIN2, BARD1, BLM, BMPR1A, BRAF, BRCA1, BRCA2, BRIP1, BUB1B, CBL, CD70, CD82, CDC73, CDH1, CDK4, CDKN1B, CDKN1C, CDKN2A, CDKN2C, CEBPA, CEP57, CFTR, CHEK2, CTC, CTNNA1, CTRC, CYLD, DDB1, DDB2, DDX41, DICER1, DIS3L2, DKC1, DLEC1, DLST, DOCK8, EFL1, EGFR, ELAC2, ELANE, ENG, EPCAM, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, ERCC8, ETV6, EXO1, EXT1, EXT2, EZH2, FAM111B, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FAS, FH, FLCN, GALNT12, GATA1, GATA2, GBA1, GEN1, GDNF, GPC3, GREM1, HABP2, HAX1, HNF1A, HOXB13, HRAS, IKZF1, ITK, KIF1B, KIT, KLLN, KITLG, KRAS, LIG4, LYST, LZTR1, MAD2L2, MAP2K1, MAP2K2, MAX, MBD4, MCIR, MDH2, MEN1, MET, MITF, MLH1, MLH3, MN1, MNX1, MRE11A, MSH2, MSH3, MSH6, MSR1, MUTYH, MXI1, NAF1, NBN, NF1, NF2, NHP2, NOP10, NRAS, NSD1, NSUN2, NTHL1, PALB2, PRNA, PAX5, PDGFB, PDGFRA, PHOX2B, PIK3CA, PMS1, PMS2, POLD1, POLE, POLH, POT1, PPM1D, PRF1, PRKAR1A, PRSS1, PRSS2, PTCH1, PTCH2, PTEN, PTPN11, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAF1, RASA1, RASA2, RB1, RECQL, RECQL2, RECQL4, REST, RET, RHBDF2, RIT1, RNASEL, RNF43, RPL11, RPL15, RPL23, RPL26, RPL27, RPL31, RPL35A, RPL36, RPL5, RPS10, RPS15, RPS17, RPS19, RPS20, RPS24, RPS26, RPS27, RPS27A, RPS28, RPS29, RPS7, RRAS, RTEL, RUNX1, SAMD9, SAMD9L, SBDS, SDHA, SDHAF2,SDHB, SDHC,SDHD, SH2B3,SH2D1A, SHOC2, SLC25A11, SLX4, SMAD4, SMARCA4, MARCB1, SMARCE1, SOS1, SOS2, SPINK1, SPRED1, SRP72, STAT3, STK11, STN1,SUFU, TERC,TERF2,TERT, TGFBR2,TINF2, TMEM127, TP53, TSC1, TSC2, TSHR, TSR2, UBE2T, VHL, WAS, WRAP53, WRN, WT1, XPA, XPC, XRCC2, XRCC

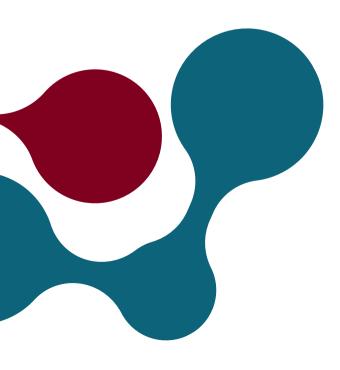
3.2 Inherit-Gene Cancer Test 39

Our panel offers average coverage >100X for 39 genes related to hereditary cancer syndromes.

Our panel includes:

Genes recognized by the **CDC** (Center for Disease Control and Prevention) as important for public health.

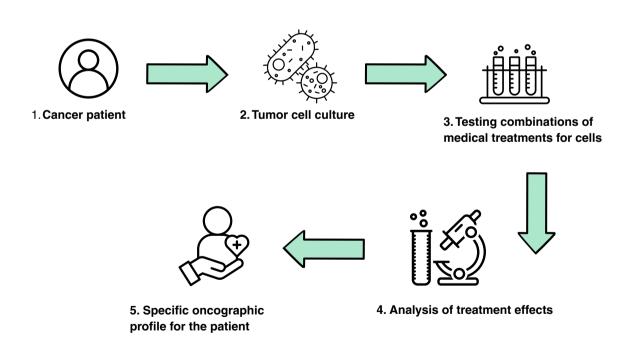
BRCA2, BRCA1, PALB2, TP53, CDH1, STK11, PTEN, and those in which pathogenic genetic variants have been identified that are associated with risks that we consider high; therefore, these genes are commonly referred to as High Penetrance Genes.


Genes whose pathogenic variants are associated with a multitude of cancer types, such as **PTEN and TP53**.

COMPLETE LIST OF GENES:

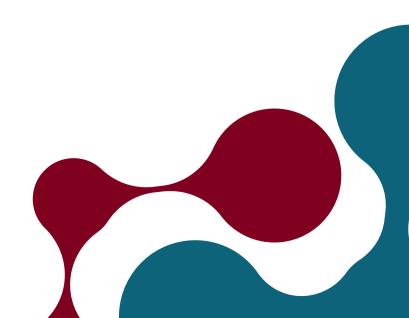
APC, ATM, AXIN2, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A (p16INK4a), CDKN2A (P14arf), CHEK2, DICER1, EPCAM, GREM1, GALNT12, HOXB13, MEN1, MITF, MLH1, MSH2, MSH6, MSH3, MUTYH, NBN, NTHL1, PALB2, PMS2, POLD1, POLE, PTEN, RAD51C, RAD51D, RNF43, SMAD4, SMARCA4, STK11, TP53, VHL.

5. EX-VIVO TEST


4. EX-VIVO TEST:

This is an innovative cell culture technique that uses the patient's own cells to determine sensitivity to chemotherapy. Approved by the EU.

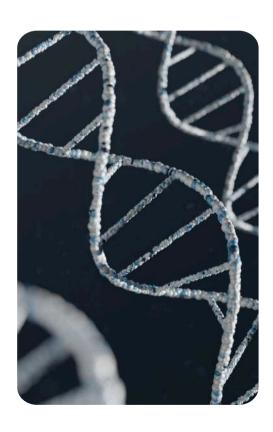
At Oncodynamics, we perform innovative personalized medicine tests that identify the most effective chemotherapy treatment for a patient with metastatic colorectal cancer (mCRC) before administering it.


Using a sample of the patient's own tumor tissue, we perform an ex vivo functional analysis that evaluates the sensitivity of cancer cells to different chemotherapy drugs.

This technology helps oncologists and patients make more informed therapeutic decisions, increasing the chances of treatment success and reducing exposure to unnecessary side effects.

5. SPECIALIZED SERVICES

5.1 DETECTION OF SPECIFIC MUTATIONS


Individual detection of specific mutations allows for greater diagnostic flexibility and can be extremely useful in cases where a previously suspected or known point mutation needs to be confirmed, or when the clinical context requires a more targeted approach.

Thanks to our advanced sequencing technologies, real-time and digital PCR, and other molecular methodologies, we offer highly sensitive and specific mutation detection in a variety of cancer types, both in tissue biopsies and liquid biopsies. This allows for accurate and personalized characterization of the tumor's genomic profile.

5.2 DETECTION OF GENOMIC INSTABILITY

We identify key markers of genomic instability, such as microsatellite instability (MSI) and tumor mutational burden (TMB), which are fundamental indicators of a tumor's ability to mutate and evolve.

Through comprehensive reports, Oncodynamics translates the complex dynamics of cancer into clear, actionable information, providing oncologists with a holistic view of the molecular, genomic, metabolic, and tumor microenvironment profile.

5.3 PHARMACOGENOMICS

Our tests enable us to identify patients with genetic variants that affect how they metabolize certain antineoplastic agents, making it easier for oncologists to tailor treatment to each individual patient before toxic effects occur.

This strategy is based on pharmacogenomics, with a focus on **genetic** biomarkers whose clinical relevance has been validated in prospective studies and recognized in current medical oncology guidelines.

- · Targeted at high-impact chemotherapeutic drugs
- · Based on clinically relevant genetic polymorphisms

Through comprehensive reports, OncoDynamics translates the complex dynamics of cancer into clear, actionable information, offering oncologists a holistic view of the molecular, genomic, metabolic, and tumor microenvironment profiles.

Pruebas qPCR	Genes / Variantes	Aplicación clínica
gb PHARM DPYD	DPYD *2A, *13, HapB3, c.2846A>T	Toxicidad a fluoropirimidinas (5-FU, capecitabina)
gb PHARM TPMT	TPMT *2, *3A, *3B, *3C	Ajuste de dosis de tiopurinas
gb PHARM CYP2C19	CYP2C19 *2, *3, *17	Metabolismo de clopidogrel, IBPs
gb PHARM UGT1A1	UGT1A1 *36, *1, *28, *37	Toxicidad con irinotecán, ictericia
gb PHARM Warfarin	CYP2C9 *2, *3; VKORC1 -1639G>A	Dosis segura de warfarina

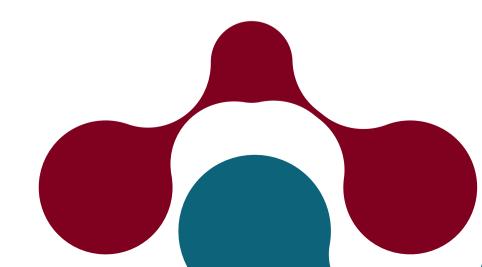
"Precision that transforms lives. Personalization that fights cancer."

WHERE TO FIND US

Germany

Speditionstraße, 15A, 40221 Düsseldorf, Alemania

Spain


Edificio Tecnológico Aeroespacial, Rúa das Pontes, Zona Franca de Vigo Nigrán, Pontevedra, 36350

United States

One Broadway Road, Cambridge M., 9th floor, 02142

México

Carretera Estatal No 431 km 1.98 Europark II, Nave 15, CP76246 El Marqués, Querétaro, México

www.oncodynamics.bio